排序
计算曲线拐点
1 Introduction 曲线上有一些特殊点会影响曲线的连续性,如重点(Multiple Point)、尖点(Cusp Point)、拐点(Inflection Point)等。一般称曲线上凸弧和凹弧的分界点称为拐点。 图1 曲线极值...
Sweep折角过渡处理
1 Introduction在《The NURBS Book》中对扫掠曲面Swept surfaces有如下定义:S(u,v)=T(v) + M(v) C(u)其中轨道曲线记为T(v),截面曲线记为C(u),M(v)是一个变换矩阵。从扫掠曲面定义中可以看出...
曲面构造-蒙皮曲面
蒙面Skinning就是将一簇截面曲线融合在一起生成曲面的过程,截面曲线可以是三维曲线。截面曲线的参数方向为u方向,融合的方向是v方向。蒙面Skinned Surface只是放样(lofting)的新叫法,后者可以...
精确HLR之边数据
Abstract. 精确HLR算法是根据模型生成图纸的重要算法,使用精确HLR算法,对于球体、圆柱体、圆锥体可以生成直线和圆弧,为生成的图纸再加工提供一些便利。OpenCASCADE中精确HLR算法较Poly算法要...
Geometry Surface of OpenCascade BRep
Geometry Surface of OpenCascade BRep eryar@163.com 摘要Abstract:几何曲面是参数表示的曲面 ,在边界表示中其数据存在于BRep_TFace中,BRep_TFace中不仅包括了几何曲线,还包含用于显示的离...
OpenCASCADE BRep vs. OpenNURBS BRep
OpenCASCADE BRep vs. OpenNURBS BRep eryar@163.com Abstract. BRep short for Boundary Representation. First give the definition of the BRep, then compare the BRep mode between OpenCA...
Representation Data in OpenCascade BRep
Representation Data in OpenCascade BRep eryar@163.com 摘要Abstract:现在的显示器大多数是光栅显示器,即可以看做一个像素的矩阵。在光栅显示器上显示的任何图形,实际上都是一些具有一种或...
OpenCASCADE Color Scale
OpenCASCADE Color Scale eryar@163.com Abstract. The color scale is a specialized label object that displays a color map and an accompanying numerical scale for color mapped or cont...
OpenCASCADE License FAQs
OpenCASCADE License FAQs 经常用人问我使用OpenCASCADE开发商业软件是否需要付费,下面从OpenCASCADE的官方网站上截取其回答翻译成中文,官方网址:https://www.opencascade.com/conten...
OpenCASCADE Root-Finding Algorithm
OpenCASCADE Root-Finding Algorithm eryar@163.com Abstract. A root-finding algorithm is a numerical method, or algorithm, for finding a value x such that f(x)=0, for a given functio...
OpenCASCADE Make Primitives-Sphere
OpenCASCADE Make Primitives-Sphere eryar@163.com Abstract. The sphere is the simplest topology shape of the BRep structure. But there are several import concept of the sphere edges...
OpenCASCADE 曲线向曲面投影
OpenCASCADE 曲线向曲面投影 eryar@163.com Abstract: Project a curve on a surface no matter the surface is a plane or BSpline Surface. The projected result curve are all BSpli...