前言
前面介绍了各种向量-向量,矩阵-向量,矩阵-矩阵的函数简介。根据自身目前状况,主要使用实数域的操作,也就是说关注单精度float类型的s
和双精度double类型的d
。还有就是用的基本都是全矩阵,没有经过压缩,也不是对称、三角、带状的某一种情况。所以主要还是总结一般的乘法、加法操作。
【注】代码都以单精度float的情况书写,主要流程要记住,使用mkl_malloc
申请内存,使用mkl_free
释放内存。n年没用过C++了,凑合看看吧。
学MKL的肯定对编程有一定程度了解,智能提示是一个很好的工具,在VS中,输入cblas_s
以后,会自动补全所有的单精度操作函数,那么根据常规经验,就能判断出它到底用于做什么以及需要的参数;比如提示axpby
意思就是a*x
加b*y
。还有就是函数有两种,一种是有返回值,一种无返回值,怎么办,只能提示看函数的声明是void
还是float
或者是double
类型即可。
向量-向量
加法
运算
y=a∗x+b∗y
y=a*x+b*y
代码
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
int main()
{
float *A, *B;//两个向量
int a=1, b=1;//标量
int n = 5;//向量大小
A = (float *)mkl_malloc(n * 1 * sizeof(float), 64);
B = (float *)mkl_malloc(n * 1 * sizeof(float), 64);
printf("The 1st vector is ");
for (int i = 0; i < n; i++){
A[i] = i;
printf("%2.0f", A[i]);
}
printf("\\n");
printf("The 2st vector is ");
for (int i = 0; i < n; i++){
B[i] =i+1;
printf("%2.0f", B[i]);
}
printf("\\n");
//计算a*A+b*B
cblas_saxpby(n, a, A, 1, b, B, 1);
printf("The a*A+b*B is ");
for (int i = 0; i < n; i++){
printf("%2.0f", B[i]);
}
printf("\\n");
mkl_free(A);
mkl_free(B);
getchar();
return 0;
}
结果
The 1st vector is 0 1 2 3 4
The 2st vector is 1 2 3 4 5
The a*A+b*B is 1 3 5 7 9
乘法
运算:向量点乘
代码:
//乘法
#include<stdio.h>
#include<stdlib.h>
#include <mkl.h>
int main()
{
float *A, *B;//两个向量
int a = 1, b = 1;//标量
int n = 5;//向量大小
float res;
A = (float *)mkl_malloc(n * 1 * sizeof(float), 64);
B = (float *)mkl_malloc(n * 1 * sizeof(float), 64);
printf("The 1st vector is ");
for (int i = 0; i < n; i++){
A[i] = i;
printf("%2.0f", A[i]);
}
printf("\\n");
printf("The 2st vector is ");
for (int i = 0; i < n; i++){
B[i] = i + 1;
printf("%2.0f", B[i]);
}
printf("\\n");
//乘法:对应元素乘积的加和
res=cblas_sdot(n, A, 1, B, 1);
printf("点乘结果: %2.0f",res);
printf("\\n");
mkl_free(A);
mkl_free(B);
getchar();
return 0;
}
结果:
The 1st vector is 0 1 2 3 4
The 2st vector is 1 2 3 4 5
点乘结果: 40
二范数
运算:二范数或者欧几里得范数,是所有元素平方和开根号
代码
//计算向量二范数
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
void main()
{
float *A;
int n = 5;
float res;
A = (float *)mkl_malloc(n*sizeof(float), 64);
printf("The original vector:\\n");
for (int i = 0; i < n; i++)
{
A[i] = i + 1;
printf("%2.0f ", A[i]);
}
printf("\\n");
res = cblas_snrm2(n, A, 1);//计算二范数
printf("The norm2 of vector is:%2.6f", res);
mkl_free(A);
getchar();
}
结果:
The original vector:
1 2 3 4 5
The norm2 of vector is:7.416198
旋转
运算:将空间中一个点,绕原点旋转的角度
代码:以二维坐标点
(2,0)
(2,0)绕原点旋转45°为例。代码有点问题,一释放内存就出错,具体原因是对两个向量开辟空间以后又让它们指向了别的地址,造成了开辟空间无用。所以调用Cblas
函数,可以直接把指向数组的指针丢进去。暂时先这样理解吧,等把C++复习一遍再来看看分析的对不对。
//旋转,以二维空间中的一个点(2,0)绕原点旋转45°
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
#include<math.h>
#define M_PI 3.14159265358979323846
int main()
{
float *A, *B;//A是坐标点,B是旋转矩阵
float point1[] = { 2 };//旋转点x坐标
float point2[] = { 0 };//旋转点y坐标
float rotpoint[] = { cos(45.0*M_PI / 180), sin(45.0*M_PI / 180) };
//A = (float *)mkl_malloc(1 * sizeof(float), 64);
//B = (float *)mkl_malloc(1 * sizeof(float), 64);
A = point1;
B = point2;
printf("The point is (%2.0f,%2.0f)",point1[0],point2[0]);
printf("\\n");
//计算旋转后的点
cblas_srot(1, A, 1, B, 1, rotpoint[0], rotpoint[1]);
printf("The rotated is (%2.6f,%2.6f)", A[0], B[0]);
printf("\\n");
//mkl_free(A);
//mkl_free(B);
getchar();
return 0;
}
结果:还是比较正确的
The point is ( 2, 0)
The rotated is (1.414214,-1.414214)
缩放
运算
x=a∗x
x=a*x
代码
//计算向量缩放
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
void main()
{
float *A;
int n = 5;
float scal=0.1;
A = (float *)mkl_malloc(n*sizeof(float), 64);
printf("The original vector:\\n");
for (int i = 0; i < n; i++)
{
A[i] = i + 1;
printf("%2.0f ", A[i]);
}
printf("\\n");
cblas_sscal(n, scal, A, 1);//缩放
printf("The scaled vector:\\n");
for (int i = 0; i < n; i++)
{
printf("%2.1f ", A[i]);
}
mkl_free(A);
getchar();
}
结果
The original vector:
1 2 3 4 5
The scaled vector:
0.1 0.2 0.3 0.4 0.5
交换
运算:交换两个向量
代码
//交换
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
int main()
{
float *A, *B;//两个向量
int a = 1, b = 1;//标量
int n = 5;//向量大小
A = (float *)mkl_malloc(n * 1 * sizeof(float), 64);
B = (float *)mkl_malloc(n * 1 * sizeof(float), 64);
printf("The 1st vector is ");
for (int i = 0; i < n; i++){
A[i] = i;
printf("%2.0f", A[i]);
}
printf("\\n");
printf("The 2st vector is ");
for (int i = 0; i < n; i++){
B[i] = i + 1;
printf("%2.0f", B[i]);
}
printf("\\n");
//交换AB
cblas_sswap(n, A, 1, B, 1);
printf("The 1st swapped vctor is");
for (int i = 0; i < n; i++){
printf("%2.0f", A[i]);
}
printf("\\n");
printf("The 2st swapped vctor is");
for (int i = 0; i < n; i++){
printf("%2.0f", B[i]);
}
printf("\\n");
mkl_free(A);
mkl_free(B);
getchar();
return 0;
}
结果
The 1st vector is 0 1 2 3 4
The 2st vector is 1 2 3 4 5
The 1st swapped vctor is 1 2 3 4 5
The 2st swapped vctor is 0 1 2 3 4
最值
运算:求最大最小值
代码
//求最大最小值
#include<stdlib.h>
#include<stdio.h>
#include<mkl.h>
void main()
{
float *A;//向量
int n = 5;//向量大小
int max, min;
A = (float *)mkl_malloc(n * 1 * sizeof(float), 64);
printf("The 1st vector is ");
for (int i = 0; i < n; i++){
A[i] = i;
printf("%2.0f", A[i]);
}
printf("\\n");
//计算最值位置
max=cblas_isamax(n, A, 1);
min = cblas_isamin(n, A, 1);
printf("The max value is %2.0f, position is %d\\n", A[max], max + 1);
printf("The min value is %2.0f, position is %d\\n", A[min], min + 1);
mkl_free(A);
getchar();
}
结果
The 1st vector is 0 1 2 3 4
The max value is 4, position is 5
The min value is 0, position is 1
矩阵-向量
乘法1
运算:
y:=α∗A∗x+β∗y
y := \\alpha*A*x + \\beta*y
代码
//矩阵-向量乘积
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
int main()
{
float *A, *B,*C;//A是矩阵,B是向量,C是向量
int m = 2;//矩阵行数
int n = 5;//向量维度,矩阵列数
int a = 1, b = 1;//缩放因子
A = (float *)mkl_malloc(m*n*sizeof(float), 64);
B = (float *)mkl_malloc(n*sizeof(float), 64);
C = (float *)mkl_malloc(m*sizeof(float), 64);
//赋值,按行存储?
printf("数组为\\n");
for (int i = 0; i < m*n; i++){
if (i%n == 0 && i != 0)
printf("\\n");
A[i] = i;
printf("%2.0f",A[i]);
}
printf("\\n");
printf("向量为\\n");
for (int i = 0; i < n; i++)
{
B[i] = i + 1;
printf("%2.0f", B[i]);
}
printf("\\n");
for (int i = 0; i < m*n; i++)
C[i] = 0;
//2*5的矩阵与5*1的向量相乘
cblas_sgemv(CblasRowMajor, CblasNoTrans, m, n, a, A, n, B, 1, b, C, 1);
printf("矩阵-向量乘法结果\\n");
for (int i = 0; i < m; i++){
printf("%2.0f ", C[i]);
}
mkl_free(A);
mkl_free(B);
mkl_free(C);
getchar();
return 0;
}
结果
数组为
0 1 2 3 4
5 6 7 8 9
向量为
1 2 3 4 5
矩阵-向量乘法结果
40 115
乘法2
运算
A:=α∗x∗y′+A,
A := \\alpha*x*y\’+ A,
代码
//矩阵-向量乘积
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
int main()
{
float *A, *B, *C;//A是矩阵,B是向量
int m=2,n = 5;//B,C向量维度
int a = 1;//缩放因子
A = (float *)mkl_malloc(m*n*sizeof(float), 64);
B = (float *)mkl_malloc(m*sizeof(float), 64);
C = (float *)mkl_malloc(n*sizeof(float), 64);
//赋值,按行存储?
printf("数组为\\n");
for (int i = 0; i < m*n; i++){
if (i%n == 0 && i != 0)
printf("\\n");
A[i] = 1;
printf("%2.0f", A[i]);
}
printf("\\n");
printf("向量1为\\n");
for (int i = 0; i < m; i++)
{
B[i] = i + 1;
printf("%2.0f", B[i]);
}
printf("\\n");
printf("向量2为\\n");
for (int i = 0; i < n; i++)
{
C[i] = i+2;
printf("%2.0f", C[i]);
}
printf("\\n");
//5*1向量乘以1*5向量,加上5*5矩阵
cblas_sger(CblasRowMajor, m, n, a, B, 1, C, 1, A, n);
printf("向量-向量相乘+矩阵的结果\\n");
for (int i = 0; i < m*n; i++){
if (i%n == 0 && i != 0)
printf("\\n");
printf("%2.0f ", A[i]);
}
mkl_free(A);
mkl_free(B);
mkl_free(C);
getchar();
return 0;
}
结果
数组为
1 1 1 1 1
1 1 1 1 1
向量1为
1 2
向量2为
2 3 4 5 6
向量-向量相乘+矩阵的结果
3 4 5 6 7
5 7 9 11 13
矩阵-矩阵
乘法1
运算
C:=α∗op(A)∗op(B)+β∗C,
C := \\alpha*op(A)*op(B) + \\beta*C,
代码
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
int main()
{
float *A, *B, *C;
int m = 2, n = 3, k = 2;//A维度2*3,B维度2*3(计算时候转置),C维度2*2
int a = 1, b = 1;//缩放因子
A = (float *)mkl_malloc(m*n*sizeof(float), 64);
B = (float *)mkl_malloc(n*k*sizeof(float), 64);
C = (float *)mkl_malloc(m*k*sizeof(float), 64);
printf("矩阵1为\\n");
for (int i = 0; i < m*n; i++)
{
if (i != 0 && i%n == 0)
printf("\\n");
A[i] = i + 1;
printf("%2.0f", A[i]);
}
printf("\\n");
printf("矩阵2为\\n");
for (int i = 0; i < n*k; i++)
{
if (i != 0 && i%k == 0)
printf("\\n");
B[i] = 1;
printf("%2.0f", B[i]);
}
printf("\\n");
printf("矩阵3为\\n");
for (int i = 0; i < m*k; i++)
{
if (i != 0 && i%k == 0)
printf("\\n");
C[i] = i;
printf("%2.0f", C[i]);
}
printf("\\n");
printf("结果矩阵\\n");
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, k, n, a, A, n, B, k, b, C, k);//注意mkn的顺序☆
for (int i = 0; i < m*k; i++)
{
if (i != 0 && i%k == 0)
printf("\\n");
printf("%2.0f", C[i]);
}
printf("\\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
getchar();
return 0;
}
结果
矩阵1为
1 2 3
4 5 6
矩阵2为
1 1
1 1
1 1
矩阵3为
0 1
2 3
结果矩阵
6 7
1718
乘法2
依旧是上述的功能,此处尝试一下
#include<stdio.h>
#include<stdlib.h>
#include<mkl.h>
int main()
{
float *A, *B, *C;
int m = 2, n = 3, k = 2;//A维度2*3,B维度2*3(计算时候转置),C维度2*2
int a = 1, b = 1;//缩放因子
A = (float *)mkl_malloc(m*n*sizeof(float), 64);
B = (float *)mkl_malloc(k*n*sizeof(float), 64);
C = (float *)mkl_malloc(m*k*sizeof(float), 64);
printf("矩阵1为\\n");
for (int i = 0; i < m*n; i++)
{
if (i != 0 && i%n == 0)
printf("\\n");
A[i] = i + 1;
printf("%2.0f", A[i]);
}
printf("\\n");
printf("矩阵2为\\n");
for (int i = 0; i < k*n; i++)
{
if (i != 0 && i%n == 0)
printf("\\n");
B[i] = 1;
printf("%2.0f", B[i]);
}
printf("\\n");
printf("矩阵3为\\n");
for (int i = 0; i < m*k; i++)
{
if (i != 0 && i%k == 0)
printf("\\n");
C[i] = i;
printf("%2.0f", C[i]);
}
printf("\\n");
printf("结果矩阵\\n");
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, k, n, a, A, n, B, n, b, C, k);//注意mkn的顺序☆
for (int i = 0; i < m*k; i++)
{
if (i != 0 && i%k == 0)
printf("\\n");
printf("%2.0f", C[i]);
}
printf("\\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
getchar();
return 0;
}
结果
矩阵1为
1 2 3
4 5 6
矩阵2为
1 1 1
1 1 1
矩阵3为
0 1
2 3
结果矩阵
6 7
1718
注意点
最主要的是记住参数顺序,首先是矩阵
op(A)
op(A)和的C行数,
op
op代表操作,乘法2中的
op
op就是转置;然后是矩阵
op(B)
op(B)和
C
C的列数;随后才是op(A)op(A)的列数和
op(B)
op(B)的行数。对于乘法2中的第二个矩阵,也就是
B
<script type="math/tex" id="MathJax-Element-399">B</script>矩阵,虽然转置了,但是还是以不转置时候,以行存储方式的引导维度,也就是列数为输入参数。
而且丢入函数的参数,并不一定是mkl_malloc
开辟的空间,也可以是其它数组,用指针指向数组地址,然后丢到函数就行了。
奉上code(vs2013): MKL -C++基本操作